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Expressions for the rate constants of VT processes are given in the form of a 
single integral, as well as asymptotic and semiempirical analytical formulas. 
Calculations are undertaken for N2 and CO molecules and their isotopic modifi- 
cations. 

In investigating vibrational relaxation in molecular gases, the rate constants are most 
often calculated using the Landau-Teller formula for the probability of the basic transition 
with correction formulas taking account of the anharmonism of the vibrations [i, 2] or semi- 
empirical formulas taking account of the deviation of the temperature dependence of the 
basic-transition probability from the Landau-Teller form [3, 4]. One method of obtaining 
such semiempirical formulas based on a quasi-classical expression for the T matrix of scat- 
tering using action-angle variables for the description of intramolecular motion was proposed 
in [5-7]. Within the framework of this approach, the influence of attractive forces may be 
taken into account, without resorting to the mean-energy approximation usually employed in 
rate-constant calculations [8]; this permits refinement of their low-temperature behavior. 

The aim of the present work is to derive analytical approximation formulas of various 
levels of complexity for the rate constants of VT transfer on the basis of quasi-classical 
approximation and verification. Calculations for the systems N 2 + N 2 and CO + CO and their 
isotopic modifications demonstrate the sufficiently high accuracy of these formulas and per- 
mits their recommendation for use in kinetic calculations. 

As discussed in [7], the low-temperature behavior of the rate constants is influenced 
basically by two factors: the presence of intermolecular attraction and change in the rate 
of relative translational motion determined by the resonance defect &E = Ein f - Eini, where 

Ein k is the internal energy of the molecule in channel k (initial i or final f). For most 

diatomic molecules in the VT-transfer process of interest here, the latter effect is much 
more significant in view of the large resonance defect [AE I >> D. The temperatures at which 
the change in translational energy has a pronounced influence on the form of the rate con- 
stant of the VT process lie below the value [7] 

T,x = [(--  21~AE) ~/2 + 4 (2~tD)~/2/(3~)p/(kB~ta!), 

[ ( a h ~ d l o ~ k ,  o ~ , ~ = ~  1 - - 2 x ~  nk-t- , k = i ,  ~. 

( i )  

(So as to be specific, the deactivation process n i = n + L + nf = n with AE < 0 is consid- 
ered.) The elastic interaction is modeled by the Morse potential 

V (R) --  D exp d ] d 

Taking account of the intermolecular attraction and the change in translational energy 
on passing from channel to channel in calculating the VT-transition probability leads to the 
expression for the equilibrium rate constant of deactivation [7] 
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/(~:: (r) = y- t~: (2) 

/(~; ~,. D , )  = -V~-(e§ a,)exp . ] / ; - ~  ~, D,  

;4 arctg D,  V D ,  /~ D.  / ' 

AI~= F~(l + 1 )  - ~  

0~ = nh + ~-  -- xe n~ -t- , e, =- -- AE/kBT' 

D. = D/kBT, Bh = 2ah ~ V ~%~-jT ' k =  i, [ 

The f r e q u e n c y  o f  e l a s t i c  c o l l i s i o n s  x -1 was c a l c u l a t e d  in  [ 9 ] .  The i n t e g r a t i o n  in  Eq. (2 )  
i s  t a k e n  o v e r  t h e  d i m e n s i o n l e s s  t r a n s l a t i o n a l  e n e r g y  in  t h e  i n i t i a l  c h a n n e l  ~ = Ei /kBT.  

As shown in  [ 7 ] ,  t h e  r a t e  c o n s t a n t  o f  t h e  VT p r o c e s s  i s  c l o s e  t o  t h e  L a n d a u - T e l l o . r  
form when T > T~. The i n t e g r a l  e x p r e s s i o n  in  Eq. (2 )  i s  s i m p l i f i e d  by t h e  u s u a l  method h e r e  
(within the framework of the Laplace method); taking account of the change in transla<ional 
energy on transition from channel to channel and the intermolecular attraction, this gives 
[7] 

(4m)~/2~ * ]~/2 
Kn:I(T) = ~-I_N_\( 4~'27 ]~l/6A:B:'/3(1-}-~)s:2 1--B~/3(1--~)(I-[-gA)J • 

{ (~ '~/~ ~ } (~) •  - - 3  By) ( 1 - - ~ ) + ~ ,  . 

8 3/D. 6s, 

~ =  3~ 2 B ~ - '  Y~= ~2B----~" 

The i n t e r p o l a t i o n a l  c o e f f i c i e n t  yk i s  i n t r o d u c e d  in  t h e  c o r r e s p o n d i n g  a s y m p t o t i c  f o r m u l a  
w i t h  t h e  aim o f  " c o r r e c t i n g "  i t s  b e h a v i o r  a t  T ~ T A, where  t h e  a s y m p t o t e  c e a s e s  t o  be v a l i d ,  
and " m a t c h i n g "  Eq. (3 )  w i t h  t h e  l o w - t e m p e r a t u r e  c o n s t a n t  g i v e n  be low.  The c i r c u m s t a n c e  
l e a d i n g  t o  t h e  i s o l a t i o n  o f  t h e  l o w - t e m p e r a t u r e  c o n s t a n t  i s  a s s o c i a t e d  w i t h  t a k i n g  a c c o u n t  
o f  t h e  change  in  t r a n s l a t i o n a l  e n e r g y  in  t h e  c o l l i s i o n  p r o c e s s .  The L a n d a u - T e l l e r  e n e r g y  
ELT a t  which  t h e  i n t e g r a n d  in  Eq. (2 )  r e a c h e s  a maximum - d e t e r m i n e d ,  as  u s u a l ,  w i t h o u t  t a k -  
ing  a c c o u n t  o f  t h e  p r e - e x p o n e n t i a l  f a c t o r  in  gq.  ( 2 )  i s  r e d u c e d  h e r e  by lkEI and ,  w i t h  r e d u c -  
t i o n  in  t e m p e r a t u r e ,  p a s s e s  beyond t h e  l i m i t  o f  i n t e g r a t i o n .  Taking  a c c o u n t  o f  t h e  p r ~ - e x p o -  
nential factor is insignificant when T > T A but, when T < TA, it becomes the determining 
factor. Whereas ELT - T 2/3 at high temperatures, ELT ~ T at T < T A. This leads to change 
in the dependence of the constant on both the temperature and the quantum numbers. In the 
low-temperature limit, the dependence on T appears only through the elastic-collision [re- 
quency x-~. This may also be understood from the following considerations. As E i § 0, the 
energy in the final channel tends to a finite value (E F ~ IAE{) and the transition probabil- 
ity determined by the state parameters in the final channel does not vanish, but tends to a 
constant value independent of the collision energy. As a result, the integral in Eq. [2) 
does not depend on the temperature. Finally, at T < TS, the following asymptotic expression 
is obtained from Eq. (2) 

Kn:/(T)--  N ~ B: ~* 1 - 1 - ~  • 

f t 2r~B:l/~** (1 + 4~, - -  8 V s - ~ . / ~ )  } (4 )  
• exp ] - -  2 (1 + 4~,) z " 

L i k e  t h e  i n t e g r a l  e x p r e s s i o n  in  Eq. ( 2 ) ,  Eqs.  (3 )  and (4)  a l l o w  t h e  whole  m a t r i x  o f  
rate constants of VT deactivation for transitions by an arbitrary number of quanta s to be 
considered. 

As an example, these formulas are used to calculate the rate constants of the processes 
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TABLE I. Rate Constants Kn§ , cmJ/sec, of the Process 
in Eq. (5)* 

T , I  4, 

" I 150 200 300 400 500 700 1000 1500 2000 3000 4000 6000 T A '  K 

0,12 0 i 0, 10 198 

10,42  197 
1 ~ ~ 1 0 'I8 
2 Io,78 196 

o,27 

4 I i ,8 194 
0,48 

5 12,4 193 
0,59} 

6 3,2 I 192 
0,71 I 

7 4,2 I 191 
0,84 I 

8 ] 5,3 [ 190 
04'497 

19 I 2,9 178 

) 2 - -11  

*First row: calculation by Eq. (2); second row) trajectory 
calculation [I0]. The bottom line indicates the order of 
magnitude of each column. 

I~N= (n -t- I) q- I~N 2 --+ lZ~N 2 (/z) -~- I'~N~, (5) 

x=CX60 (n -I- 1) q-- 120o0 --+ xzOoO (n) + I~-C~60 ( 6 ) 

and the results are compared with the data of trajectory calculations [i0, ii]. Despite the 
widespread use of the trajectory method, it has a series of deficiencies. 

Above all, the calculation results are sensitive to the method used in approximating 
the potential surface, especially close to the points of rotation [12]. The accuracy of 
such calculations falls significantly on reducing the temperature. Thus, on taking account 
only of the short-range potential, the error in determining the constant at i00 K is 100% 
[ii]. In addition, these calculations employ the mean-energy approximation, which is in- 
adequate at low temperatures. All this permits the conclusion that calculations of the rate 
constants from Eq. (2) at temperatures T < T h are more reliable. 

The results of calculations for 14Nz with parameters of the potential D = 3.58"10 -4 at. 
units, d = 1.15 at. units, a r = a a = 0.20 are shown in Table i, and results for 12C160 with 
D = 3.48-10 -4 at. units, d = 1.0 at. units, a r = a a = 0.1097 in Table 2. The values of the 
spectroscopic constants of the molecules used in the calculations are shown in Table 3. 
The integral in Eq. (2) is calculated from the Laguerra quadrature formula [13] using a ten- 
point approximation. As is evident from analysis of the data in the tables, the use of Eq. 
(2) allows sufficiently accurate data to be obtained on the rate constants of VT processes 
in a wide range of temperatures and quantum numbers, especially if it is taken into account 
that the results of [i0, II] at T > I000 K are somewhat higher than the experimental data. 
The divergence in the rate-constant values is associated above all with difference in the 
potential surfaces used in [I0, ii] and in the present calculations. Calculation shows that 
the use of extremely complex surfaces [i0, ii] is not justified in terms of the reproduction 
of the temperature dependence of the constants (as already noted, the discrepancy at low 
temperatures is associated with the use of the mean-energy approximation in [i0, ii] and not 
with the model of the interaction). On the other hand, taking only the term which is linear 
with respect to the vibration amplitude in the molecular-interaction potential into account 
in the calculations leads to a fairly strong dependence on the quantum numbers. 

The difference in the data obtained within the framework of Eq. (2) and the asymptotic 
Eqs. (3) and (4) is apparent mainly in the low-temperature region. This is because Eq. (4) 
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TABLE 2. Rate Constants Kn+1,n(T), cma/sec, of the Process 
in E, (6)* 

T,K 
n 

,50 1200 1300 1400 5001,000 1500 12o00 30o0 4o00 6000 

o 3,13 I p,o28 
3,002 I ~,043 

1 0,48 3, IO 
9,11 

2 0,98 0,20 
0,20 

3 1,7 9,35 
3,33 

4 2,6 3,55 
3,51 

5 3,9 9,81 
3,75 

6 5,6 1,2 
1,1 

7 7,9 1,7 
1,5 

9 K 3,1 
2,9 

11 2~ 5,7 
5,3 

19 25( 51 
43 

29 360 690 
415 

--1 --17 

*Structure as in Table i. 

[ 
O, 6~ 0,38 
0,6~ 0 ,81  

I 
2,3 1 , 3  
1,6 1,8 

4,5 2,5 
2,8 3,1 
7,3 4 ,  l 
4,3 4,7 
11 6,0 
6,' 6,6 

16 8,4 
8,( 8,8 

2t II 
12 12 

29 15 
15 15 

50 26 
24 22 
82 41 
38 31 

490 220 
160 86 

3700 1500 
800 220 

--15 --14 

0,41 
1,2 
1,4 
2,6 
2,6 
4,2 
4,1 
6,2 
6,0 
8,5 

11 
II 
14 
17 

23 
25 
36 
33 
170 
58 

900 
80 

--13 

0,20 
0,42 

"0,67 
0,91 
1,2 
1,5 
1,9 
2,1 
2,8 
2,9 
3,8 
3,7 

5,0 
5,6 

6,4 
5,6 

10 
7,7 
15 
lO 

300 
17 

--12 

220 

219 

218 

216 

215 

214 

213 

212 

210 

207 

198 

185 

TABLE 3. Spectroscopic Parameters of Isotopic Modifications 
of the N 2 and CO Molecules 

Order of 
Isotope 14N~ ~4N,5 N '~N2 ~2C'~O '2C~sO '~C~O magnitude 

me(a t . un. t 1,075 
xe 6,126 

1,057 

6,126 

1,038 

6,126 

0,9886 

6,124 
0,9648 
5,977 

0,9666 

5,988 
--2 
--3 

is obtained under the assumption that T << Tk (T < 100 K for the given systems) and poorly 
reproduces Eq. (2) at T ~ Tk (for the given systems, T A ~ 200 K). Note also that, in accord- 
ance with the available experimental data - see [3], for example - the deviation from Landau- 
Teller conditions for the polar molecule CO is apparent at higher temperatures than foc N 2. 

The use of the Laguerra quadrature formula in calculating the integral in Eq. (2) per- 
mits reduction in the time for the calculation of a single rate-constant value to the :ime 
required when using the analytical expressions, and thus the recommendation of Eq. (2) for 
kinetic calculations. 

In connection with [14J, the influence of isotopic substitution on the behavior of the 
VT-transfer rate constants is considered. It is known that N 2 and CO molecules each have 
two other isotopic modifications other than the basic ones: Z4N~SN and ZSN2; 12CZS0 and 
Z3C160. To study the isotopic effect, the rate constants of the following processes ave 
calculated using Eq. (2) 

I;N ~SN (n q- 1 ) q- '*~N2 --* I~N 15N (n) + 1aN 2, 

~SN~ (n § l) + ~N~ --,- 'SN 2 (n) q- '~-N2, 

1'*N2 (n q- l ) q- ~N 15N ~ I~N 2 (n) q- I~N ~SN, 

I'~N 2 (n q- 1) q- 'SN~ -+  I~N 2 (n) q- lSN 2, 

~zC~sO (n + 1) § ~2C~GO -+ ~-~C~sO (n) + ~2C~60, 

~aC~O (n + 1) -F '2C~60 -+ ~aCx~O (n) + ~2C~0. 

(7) 

(8) 
(9) 

(zo) 
(11) 

(12) 
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TABLE 4. Numerical Values of the Parameters in 
Eqs. (13) and (14 for Single-Quantum (s = i) 
Transitions at T o = i000 K 

Transition Ko, cmS/ ~ K1, cm s/I T~, K r~, K c 
sec sec I 

5 
6 
7 
8 
9 

10 
11 
12 

Order of 
magnitude 

0,918 
7,07 
1,01 
1,15 
0,773 
0,655 
7,41 
8,26 

--17 

6,515 
5,509 
6,516 
6,5!1 
6,570 
6,624 
5,534 
5,496 

0 

1,37 
82,6 

1,42 
1,53 
1,02 
0,769 

76,3 
93, I 

--22 

I 1,21 
0,777 
1,19 
1,17 
1,23 
1,25 
0,765 
0,756 

3,39 
3,12 
3,33 
3,27 
3,29 
3,29 
3,04 
3,05 

3 

4,23 
3,52 
4,23 
4,22 
4,26 
4,30 
3,54 
3,51 

U ? .  / _ 

(0 5 

; 2 

/ \ 

N \ 

e [  , 
o 

/2 

qS; 

qs 

5 
2 

i 
3 

I i I I I 

2000 zrO00 7- 0 I0 20 30 n 

Fig. 1 Fig. 2 

Fig. i. Temperature dependence of the isotopic effect for 
the rate constants of the basic transition in N2 (curves i- 
4) and in CO (curves 5 and 6). T, K. 

Fig. 2. Dependence of the isotopic effect on the vibrational 
excitation of the molecule: i-4) N2; 5, 6) CO. The contin- 
uous curve corresponds to T = 2000 K and the dashed curve to 
T = 500 K. 

The values of the spectroscopic constants used here are shown in Table 3. Since the isotopic 
effect is sufficiently small (S40%), the results of these calculations in Figs. 1 and 2 are 
shown in the form of the ratio rn(T) of the rate constants of the processes in Eqs. (7)-(10) 
to the constant of the process in Eq. (5) (curves 1-4, respectively) and the ratio of the 
rate constants for Eqs. (ii) and (12) to that for Eq. (6) (curves 5 and 6). It is evident 
from Fig. 1 that the isotopic effect due to the change only in the reduced mass of the col- 
liding molecules appears more strongly at low temperatures and decreases monotonically with 
increase in T (curves 3 and 4). For the processes in Eqs. (7) and (8) and in Eqs. (Ii) and 
(12), the isotopic effect is characterized by the presence of a maximum at temperatures 500- 
1500 K and a very weak temperature dependence at T ~ 1500 K (curves i, 2, 5, and 6). The 
dependence of the isotopic effect on the vibrational excitation of the molecule is practic- 
ally linear and is shown in Fig. 2 for two temperature values. 

In a series of problems where what is important is not the fine details of the non- 
equilibrium vibrational distribution function but only the description of relaxation of its 
first moment - the vibrational energy [1-3] - less accurate but much simpler approximations 
may be used for the rate constants. Such approximations may conveniently be derived on the 
basis of Eqs. (3) and (4). Taking account of the small anharmonism constant Xe, the pre-ex- 
ponential factors and exponents in Eqs. (3) and (4) are expanded in terms of x e, confining 
attention to the linear approximation. The result of this transformation may be written in 
the form 

l(n + 1) Kl,o (r) exp 2nx~ T ' 
K~+z,~  (T)  = .: 

l low 
l ( n -~  1) K l ,o (T)exp  {Cnxe}, T <  T A, 
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-55 ~ ~ R 
o,o~ olo o/5 r-'/s 

I , I , I ! I _ _  , ] i I ( 

4,000 2000 I000 500 JO0 200 T 

Fig. 3. Temperature dependence of the 
rate constant of the basic transition 
for Eq. (5): i) calculation from Eq. 
(2); 2) from Eqs. (3) and (4); 3) tra- 
jectory calculation [i0]; 4) calcula- 
tion from Eq. (14); 5) from the ap- 
proximate formula of [4]. in Kz0, cm3/ 
sec; T -I/3, K-I/3; T, K. 

T 1 = ~  (~d~e[) 2, To. =-~el /kB,  C =:ad(~[/2~) 1 / 2 , . ,  (13) 

LT . low 
and Ks 0 and N~,0 are the rate constants of the basic transition in Landau-Teller and low- 

temperature conditions. Thus, Eq. (13) has the characteristic structure for the rate zon- 
stants of vibrational energy transfer, factorizing into the rate constant of the basic 
transition, which depends solely on the temperature, and a scale factor which depends ~n n 
and T. As is evident from Eq. (13), the scale factor is very simple in form; the expression 
for Ks 0 is more cumbersome, and may be simplified. To this end, it is sufficient to note 

LT 
that in double logarithmic coordinates, the graph of K~ 0 for N~ and CO molecules is a:)prox- 
imated adequately by a straight line. Hence, it is possible to set K~Tn(T) = K0(T/T0):f~ 

where T, K0, and To are fitting parameters. The change in character of the temperature de- 
pendence of K~, 0 at T < T~ may be taken into account using the term K~T0, which makes a 

negligible contribution at T > T&. Since the temperature dependence at T < T~ is weak. this 
term may be regarded as constant: Kz = K~To(Tmin), where Tmi n < T is the left-hand boundary 
of the given temperature range. Thus 

K<o(T) = Ko(T/To)VZrK~. (14)  

The p a r a m e t e r s  K0, To, y may be d e t e r m i n e d ,  f o r  e x a m p l e ,  u s i n g  t h e  l e a s t - s q u a r e s  method f rom 
e x p e r i m e n t a l  d a t a ,  t h e  r e s u l t s  o f  t r a j e c t o r y  c a l c u l a t i o n s ,  o r  d a t a  o b t a i n e d  f rom Eq. ( 2 ) .  
Table 4 gives the value of these parameters for single-quantum (~ = i) transitions in I;qs. 
(5)-(12) with n = 0 for the temperature range 100-6000 K, with T o = i000 K and the parame- 
ters Tz, T2, and C obtained from Eq. (13). 

The rate constant of the basic transition for the process in Eq. (5) calculated f~om 
Eq. (14) is compared in Fig. 3 with the results of trajectory calculations, calculatiors 
from Eq. (2), and calculations using the approximate formulas of [4]. It is evident from 
these results that the simple Eq. (14) gives results very similar to those of Eq. (2), is a 
sufficiently good approximation of the trajectory calculations, and may be recommended for 
the calculation of the rate constants in a broad range of problems of kinetics and physical 
gas dynamics. As shown by comparison with the results of trajectory calculations, the con- 
version formulas in Eq. (13) for the rate constants of transitions between excited vibra- 
tional levels cease to operate in the range of n and T where the strong influence of anhar- 
monism of the molecular vibrations begins to be felt. For the CO molecule, for example, 
this is the region with n ~ 30, T ~ 3000 K, i.e., the region where, in view of the use of 
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the approximation linear with respect to the vibration amplitude in the inelastic intermo- 
lecular potential, the results obtained using Eq. (3) differ considerably from the results 
of trajectory calculations. 

NOTATION 

Ein, internal energy of molecule; D, depth of molecular-interaction potential well; T, 
temperature; d, radius of action of potential (Morse potential parameter); D, reduced mass; 
kB, Boltzmann constant; me, oscillator frequency; Xe, anharmonicity parameter; n, vibra- 
tional level; T, time of free flight; N, numerical density of gas; Knm , rate constant of 
transition from level n to level m; ar,a, coupling constants in the repulsive and attractive 
components of the inelastic interaction potential; V(R), molecular-interaction potential. 
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